Wednesday, 6 September 2017

Form 4 Chapter 8 : Circular Measure


CHAPTER 8 : CIRCULAR MEASURE


8.1  Radians  
1) An angle is measured in degree (°) or radians (rad).
2) 1 radian is the angle subtended at the centre of a circle by the arc of length which is equal to the radius of the circle.
  3) One full turn, 360° is 2π radian.

4) Convert degree to radian:
  




Example 1 : 
Convert the following angles to radains
(a) 27°
(b) 136.2°
(c) 205°
(d) 84°42'

Solution:

(a) 27° = 27  x  π/180°
            = 0.4712 rad

(b) 136.2°  =  136.3  x  π/180°
                 =  2.377 rad

(c) 205°  =  205  x  π/180°
               =  3.578 rad

(d) 84°42'  =  84.7°
                  =  84.7  x   π/180°
                  =  1.478 rad

5) Convert radian to degree:


Example 2 :

Convert the following angles to degree.
(a) 1.25 rad
(b) 0.8 rad
(c) π/2 rad
(d) 5π/3 rad

Solution :
   π rad = 180°

(a) 1.25 rad  =  1.25  x  180/π
                    =  71.62°

(b)  0.8 rad  =  0.8  x  180/π
                   =  45.84°

(c)  π/2 rad  =  π/2  x  180/
                    =  90°

(d) 5π/3 rad  =  5π/3  x  180/π
                    =  300°



8.2 Arc Length of a Circle

A. Formulae for Length and Area of a Circle



r = radius    A = area    s = arc length    q = angle    l = length of chord




B. Length of an Arc of a Circle





1) The diagram above show a circle with centre O and radius r. PQ is the minor arc and PRQ is a major arc.

2) The length of the arc PQ, s, is directly proportional to the angle θ.






3) The angle subtended by the arc PRQ at the centre of the circle, O, is (2π - θ).


Example 1 :
Calculate the length of the arc, s, of the following circles.

(a)


Solution :
                                                        r  =  6cm     ,      θ  =  0.75 rad
                                                          s  =  r θ
                                                              =  6  x  0.75
                                                              =  4.5 cm

(b)

Solution :                                   r  =  5 cm      ,       θ  =  3π/4 rad
                                                     s  =  r θ
                                                         =  5  x  3π/4
                                                         =  11.78 cm

Example 2 :
Calculate the arc length, s, of the following sectors.

(a)

Solution :                                        r  =  6.5 cm 
                                                 θ  =  72°
                                                     =  72  x  π/180
                                                     =  1.2566 rad    

                                                  s  =  rθ
                                                      =  6.5  x  1.2566
                                                      =  8.168  cm

(b)


Solution :                                        r  =  8 cm
                                                      θ  =  250°
                                                          =  250  x  π/180
                                                          =  4.3633 rad     

                                                       s  =  rθ
                                                           =  8  x  4.3633
                                                           =  34.91  cm


Example 3 :
The diagram below shows a circle with centre O and radius 9 cm.


Calculate the length of the malor arc AB.

Solution :
Let the angle subtended by the major arc AB at O be θ.
θ  =  360° - 115°
    =  245°
    =  245  x  π/180
    =  4.276 rad  

Length of the major arc AB  =  rθ
                                             =  9  x  4.276
                                             =  38.48 cm


Example 4 :
Calculate the radius , r, of the following circles.
(a)

Solution :                                       θ  =  0.8 rad     ,       s  =  6 cm
                                                  r  =  s/θ
                                                     =  6 / 0.8
                                                     =  7.5 cm

(b)

Solution :                                       



                                                            θ  =  2π  - 2π/3
                                                                =  4π/3
                                                            s  =  37.7 cm
                                                             r  =  s / θ
                                                                =  37.7 / 4π/3
                                                                =  9 cm


Example 5 :
The diagram shows a circle with centre O.
Given that the length of the major arc PQ is 39.8 cm, find the radius of the circle.

Solution:



θ  =  2π - 1.65
    =  4.6332
s  =  39.8

Radius of the circle, r  =  s/θ
                                    =  39.8 / 4.6332
                                    =  8.59 cm

Example 6 :








An arc, AB, of a circle of radius 5 cm subtends an angle of 1.5 radians at the centre.  Find the length of the arc AB.

Solution :

s = rθ
Length of the arc AB = (5)(1.5)
                                   = 7.5 cm

Example 7:





In the above diagram, find

(i) length of the minor arc AB
(ii) length of the major arc APB


Solution :
(i) length of the minor arc AB = rθ
= (7)(0.354)
2.478 cm

(ii) Since 360o = 2π radians, 
the reflex angle AOB
= (2π – 0.354) radians.

Length of the major arc APB
= 7 × (2π – 0.354)
= 7 × [(2)(3.1416) – 0.354]
= 7 × 5.9292
= 41.5044 cm


Mind Map:






Video:
1. Finding Arc Length of a Circle



2. How do we Find the Length of an Arc








23 comments:

  1. Thanks for the information!

    ReplyDelete
  2. Thanks for the information.
    It is useful for the student and easy to know how to solve equation.

    ReplyDelete
  3. information yang jelas
    easy to me to solve question

    ReplyDelete
  4. terima kasih! ini banyak membantu untuk ajar anak saya.

    ReplyDelete
  5. sangat membantu

    ReplyDelete
  6. Thx Christopher for the information with examples and sulutions.

    ReplyDelete
  7. THANKS FOR THE INFORMATION

    ReplyDelete
  8. thank you for showing step-by-step solutions.

    ReplyDelete
  9. This information is very useful for student

    ReplyDelete
  10. formula dan cara-cara penyelesaian yang bagi sangat jelas,saya lebih fahami selepas ini!
    ✔terima kasih
    ✔thank you

    ReplyDelete
  11. It is clearly to show that the step by step of the solutions,it is helpful for my exams.
    #Thank you
    #Nice information
    #Hopefully

    ReplyDelete
  12. 😍 😍 😍 👍 👍 👍

    ReplyDelete
  13. Thank You and that i have a swell give: Is It Good To Buy Old House And Renovate general contractor for home renovation

    ReplyDelete

Simultaneous Equation~

      A.    Simultaneous Equation        1.      Linear equation are equations that have one or more unknowns in the first degree.   ...